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Abstract 

Rural water networks in the developing world are typically branched networks with a single water source. The main design 

decision to be made for such networks is the choice of pipe diameters from a discrete set of commercially available pipe 

diameters. Larger the pipe diameters, better the service (pressure), but higher is the capital cost. In general, each link (connection 

between two nodes) in the network can consist of several pipe segments of differing diameters. For such networks, existing 

design tools solve the constrained-optimization problem heuristically [1] [2]. In [3], an ILP formulation is proposed for the 

special case of one pipe diameter per link. This means that currently one can either get an optimal solution for the special case of 

one piped segment per link or get a non-optimal solution for the general case of multiple pipe segments per link. In this work, we 

come up with a model that solves the general formulation while still maintaining optimality. Our model has an LP formulation. It 

not only manages to optimally solve the general case, it also has a runtime performance that is better than both the heuristic 

approach to the general problem as well as the optimal approach to the specific problem (one pipe per link). To aid the designers 

of piped water networks, we have developed an optimization system called JalTantra that implements this model. It also has GIS 

functionality integrated for ease of providing network details. It is publicly available at http://www.cse.iitb.ac.in/jaltantra/ . 
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1. Introduction 

Piped water network cost optimization has been studied for more than 30 years now. Several constrained 

optimization techniques from Linear Programming [4] to Genetic Algorithms [13] have been employed to solve 

various variations of the cost optimization problem. In this work, we focus on the cost optimization of rural piped 

water networks. These networks are typically gravity fed, since reliable electricity supply is not a given. Pumps are 

deployed only at the water source and not in the rest of the distribution network. Acyclic (branched) networks are 

common since the redundancy provided by cyclic (looped) networks is an unaffordable luxury.  

One of the most important aspects in the design of these systems is the choice of pipe diameters from a discrete 

set of commercially available pipe diameters. In general, each link (connection between two nodes) can consist of 

several pipe segments of differing diameters.  The larger the pipe diameters, the better the service (pressure), but the 

higher is the capital cost. The branched piped water network cost optimization problem is the selection of pipe 

diameters that minimize the system cost while providing the requisite service (pressure at demand points). 

BRANCH [1] is an optimization tool by the World Bank that attempts to minimize pipe cost for branched pipe 

networks with a single water source. Though it has limited capabilities in terms of number of pipes (at most 125), 

and does not guarantee optimal solution, it is used ([11], [14], [15]) in the developing world as the only alternatives 

are expensive commercial tools like WATERGEMS [2]. Even WATERGEMS does not guarantee optimal solution 

since it uses a genetic algorithm.  

In [3], an ILP formulation is proposed for the special case of one pipe diameter per link. This means that 

currently one can either get an optimal solution for the special case of one piped segment per link [3] or get a non-

optimal solution for the general case of multiple pipe segments per link [1], [2]. In this work, our aim is to come up 

with a formulation that solves the general formulation while still maintaining optimality.  

For the general problem, in addition to the user provided pressure and flow related constraints, following 

additional constraint is inferred from [5]:  in the optimal solution, each link consists of at most two pipe segments of 

adjacent diameters from the available diameter set. We take two approaches to the multiple pipes per link 

formulation. In the first approach, we use the fact that the optimal solution will contain at most two pipe segments 

per link [5]. In the other approach, we make no assumption on the number of pipe segments per link. Surprisingly, 

the latter formulation’s runtime performance is much better than the former. But knowing the structure of the 

optimal solution and trying to capture that as a constraint led to a much worse runtime performance! The second 

formulation solves the problem optimally and efficiently. Its solution indeed only contains at most two pipe 

diameters for each link in the network. The structure that we were trying to enforce for the first formulation has 

come out naturally in the second.  

Using the general formulation we have implemented a water network design system called JalTantra. The system 

also has GIS integration for ease of adding network details. The overall goal for JalTantra is wide reaching and will 

attempt to solve several network design constraints like source selection, storage location/capacity, choice of pipe 

diameters, water supply scheduling, cost allocation etc. The scope of the present study is restricted to determining 

the pipe diameters in a single source acyclic (branched) network.  

The rest of the paper is structured as follows. Section 2 describes the problem formulation. Section 3 is a brief 

description of the environment used to build the JalTantra system. Section 4 describes the comparison results of the 

different models on six different networks. Conclusions and future work directions are presented in Section 5.   

 

Nomenclature 

O(.) The total pipe cost which is a function of the pipe diameters chosen for each link  

NL The number of links in the network 

Di Pipe diameter for the link i 

Li Length of link i 

Ci Cost per unit length of link i, a function of the pipe diameter Di 

NP Number of commercially available pipe diameters 

xij boolean variable, 1 if the ith link uses the jth diameter, 0 otherwise  

Pn The minimum pressure that must be maintained at node n 
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HR The head supplied by the reference node R 

En The elevation of node n 

Sn Set of pipes that connect node n to the reference node R 

HLij Headloss in link i due to diameter j 

2. Problem Formulation 

2.1. Problem Definition 

The typical rural piped water network consists of a source MBR (mass balancing reservoir), demand nodes, and 

pipes connecting them. If required, pumps are used to supply water from a water body to the MBR which then feeds 

the remaining network by gravity. A gravity fed network has its MBR located at a higher elevation so that no 

pumping is required for the downstream network. An example network is shown in Figure 1. It consists of 5 nodes 

and 4 links. Node 1 is the source for the network, and nodes 2, 4 and 5 are the demand points. Node 3 is a zero 

demand node. Such nodes are typically introduced at intermediate points of high elevation. 

 

 
Figure 1: Gen_5 network 

Nodes in the network have water demands and minimum pressure requirements that must be maintained. The 

design process involves selecting the diameters for the pipes that must be used to supply these nodes. Lower the 

diameter, lower is the cost of the pipes. But lower diameters cause higher friction losses in the pipes which may lead 

to insufficient pressures at the demand nodes. Therefore the optimization goal is to minimize pipe cost under the 

constraint of minimum pressure requirements at the demand nodes. The choice of diameter is to be made from a 

discrete set of commercial pipe diameters that are available. 

Rural piped water networks are typically branched (acyclic) as compared to urban networks which are frequently 

looped. In our present study we restrict ourselves to single source acyclic piped water networks. Since the network is 

acyclic, flow in each link can be computed easily from the node demands. The pumping from source to MBR is not 

considered. Instead we assume a source that is able to maintain the supply of water at the given head (head at a point 

is the height to which water naturally rises. The pressure at a point is the difference between its head and elevation.). 

Formally, we are solving the following optimization problem: 

 Input: Source node<head>, Nodes<elevation, water demand, minimum pressure requirement>, Link<start/end 

node, length>, Commercial pipe diameter<cost per unit length, roughness> 

 Output: Length and diameter of pipe segments for each link 

 Objective: Minimize total pipe cost 

 Constraints: 

○ Pressure at each node must exceed minimum pressure specified 

○ Water demand must be met at each node  

○ Pipe diameters can only take values from provided commercial pipe diameters 

2.2. One Pipe Per Link 

[3] has an Integer Linear Programming (ILP) formulation for the problem where only one pipe diameter is used 

per link. It uses binary variables to represent the choice of commercial pipe to be made for each link. Henceforth we 

use the term OnePipe model while referring to this formulation. 
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2.2.1. The Objective Function:  

The objective function to be minimized is the total cost of the pipes chosen for the links in the network. The 

diameters Di can only be chosen from the set of available commercial pipe diameters. This restriction is represented 

via binary variables xij. The objective function is: 

𝑂(. ) =  ∑ ∑ 𝐿𝑖𝐶𝑖𝑗(𝐷𝑖𝑗)𝑥𝑖𝑗

𝑁𝑃

𝑗=1

𝑁𝐿

𝑖=1

 

2.2.2. Pipe constraint: 

For each link the objective function has terms for each of the available commercial pipe diameters. Since each 

link is to be installed with only one diameter, it means that exactly one of the binary variables corresponding to each 

link must be one. Therefore we get the following pipe constraint for each link i:  

∑ 𝑥𝑖𝑗

𝑁𝑃

𝑗=1

= 1 

2.2.3. Node constraint: 

At each node a minimum amount of pressure needs to be maintained. The pressure at any node is calculated from 

the headloss in the pipes connecting the node to the reference node i.e. the source for the network. We use the 

Hazen-Williams formula for headloss. Therefore the pressure constraint for each node n is: 

𝑃𝑛 ≤  𝐻𝑅 − 𝐸𝑛 − ∑ ∑ 𝐻𝐿𝑖𝑗𝑥𝑖𝑗

𝑁𝑃

𝑗=1𝑖∈𝑆𝑛

 

𝐻𝐿𝑖𝑗 =

10.68 ∗ 𝐿𝑖 ∗
𝑓𝑙𝑜𝑤𝑖

𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠𝑗

1.852

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑗
4.87  

2.3. Two Pipes Per Link 

The previous formulation assumes a single pipe diameter for each link in the network. But this might not be (and 

usually isn’t) the optimal solution. In the most general case, we could have several pipes of varying diameters for a 

single link in the network. In [5] it is shown that in the optimal solution each link will consist of at most two pipe 

segments of adjacent diameters. The above will hold if the commercial pipe cost is a convex function of a power of 

its diameter, which is the case in practice. To incorporate this knowledge about optimal solution structure we modify 

the objective function, as given next.  

2.3.1. The Objective Function: 

To generalize the formulation in order to account for multiple pipes per link we introduce two new continuous 

variables for each link: li1 and li2. The previous boolean variable representing the choice of commercial pipe for each 

link is now broken into two: xij1 and xij2. Here li1/ li2 represent the length of the two pipes for link i and xij1/ xij2 

represent the choice of diameters for the two pipes. The modified objective function is:  

𝑂(. ) =  ∑ ∑ 𝐶𝑖𝑗1(𝐷𝑖𝑗1)𝑙𝑖1𝑥𝑖𝑗1 + 𝐶𝑖𝑗2(𝐷𝑖𝑗2)𝑙𝑖2𝑥𝑖𝑗2

𝑁𝑃

𝑗=1

𝑁𝐿

𝑖=1
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This formulation is not linear since we have products like li1 * xij1 both of whose terms are variables. We linearize 

this equation by introducing zij1: 

𝑧𝑖𝑗1 = 𝑙𝑖1𝑥𝑖𝑗1 

This nonlinear equality is represented by the following set of linear inequalities: 

𝑧𝑖𝑗1 ≤ 𝐿𝑖𝑥𝑖𝑗1,       𝑧𝑖𝑗1 ≤ 𝑙𝑖1,          𝑧𝑖𝑗1 ≥ 𝑙𝑖1 −  𝐿𝑖(1 − 𝑥𝑖𝑗1) 

A similar set of inequalities will be introduced for zij2 as well. This linearization is possible since z is a product of 

a continuous variable and a boolean variable. Our new objective function:  

𝑂(. ) =  ∑ ∑ 𝐶𝑖𝑗1(𝐷𝑖𝑗1)𝑧𝑖𝑗1 + 𝐶𝑖𝑗2(𝐷𝑖𝑗2)𝑧𝑖𝑗2

𝑁𝑃

𝑗=1

𝑁𝐿

𝑖=1

 

2.3.2. Pipe Constraint 

As before, the choice of pipe diameter must be made from the available commercial pipe diameters. 

∑ 𝑥𝑖𝑗1

𝑁𝑃

𝑗=1

= 1 

Similar equalities hold for xij2. We also have following additional constraint for each link i. 

𝑙𝑖1 + 𝑙𝑖2 = 𝐿𝑖 

2.3.3. Node Constraint 

The node constraint for minimum pressure requirement now changes since length of each pipe segment is no 

longer a constant. The node constraint in each link i now becomes: (possible since HLij is linear in the length of the 

pipe) 

 

𝑃𝑛 ≤  𝐻𝑅 − 𝐸𝑛 −  ∑ ∑ 𝐻𝐿′𝑖𝑗(𝑧𝑖𝑗1 + 𝑧𝑖𝑗2) 

𝑁𝑃

𝑗=1𝑖∈𝑆𝑛

 

𝐻𝐿′𝑖𝑗 =

10.68 ∗
𝑓𝑙𝑜𝑤𝑖

𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠𝑗

1.852

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑗
4.87  

2.3.4. Performance 

On testing the new formulation, the runtime performance is found to be very poor. Whereas for the OnePipe 

model a 100 node network can be solved in 1.5 seconds, the new formulation cannot solve optimally even a 10 node 

network before getting timed out at 100 seconds. 

The reason for this is the large number of new constraints that are added to the system. Previously all constraints 

were linear in the number of nodes. We had only one constraint for each link and one for each node (for an acyclic 

network number of links is one less than the number of nodes). But now, in order to introduce zij1 and zij2, we have 

introduced 6 new constraints for each (link, pipe diameter) combination.  
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2.4. Proposed Model 

In the previous formulation to introduce multiple pipes per link, we determine the lengths of the two pipes in the 

link and independently assign a commercial pipe diameter to each. This causes a blowup in the number of 

constraints. 

To overcome this, we ignore the two pipe segment structure and model each link as being made up of pipes for 

each possible commercial pipe diameter. All that remains is to determine the length of each component. No explicit 

choice is made as to which pipe diameter is chosen. The pipe component is chosen if it has non-zero length.  

We introduce continuous variables lij and do away with the binary choice variables xij. Each link is made up of 

NP components corresponding to the NP pipe diameters. lij then represents the length of each of these components.  

2.4.1. The Objective Function: 

We replace the terms li*xij with lij in our objective cost: 

𝑂(. ) =  ∑ ∑ 𝐶𝑖𝑗(𝐷𝑖𝑗)𝑙𝑖𝑗

𝑁𝑃

𝑗=1

𝑁𝐿

𝑖=1

 

2.4.2. Pipe constraint: 

Now the pipe constraint simply reduces to: 

∑ 𝑙𝑖𝑗

𝑁𝑃

𝑗=1

= 𝐿𝑖 

2.4.3. Node constraint: 

In the node constraint we replace xij * Li with lij: 

𝑃𝑛 ≤  𝐻𝑅 − 𝐸𝑛 − ∑ ∑ 𝐻𝐿′𝑖𝑗𝑙𝑖𝑗

𝑁𝑃

𝑗=1𝑖∈𝑆𝑛

  

We now have a more general formulation for our pipe diameter optimization problem. If the necessary convexity 

conditions [5] are met, our solution should naturally contain only two pipes per link with adjacent diameters. 

As in the case of OnePipe the number of constraints is linear in the number of nodes and the performance turns 

out to be much better. Table 1 shows the size of model in terms of variables and constraints for the two approaches.  

 
Table 1: Model Size (m is the number of pipe diameters which is taken as 10) 

 Two Pipe Approach General Approach 

Node Constraints Variables Constraints Variables 

N 6n + 8nm 2n + 4nm 2n nm 

10 860 420 20 200 

100 8600 4200 200 2000 

 

For a 100 node network we have around 200 inequalities for the general formulation. But for the two-pipe model, 

a network with just 10 nodes the number of constraints is around 800! Also by eliminating binary variables and 

replacing them with continuous variables we have converted what is an Integer Linear Program (ILP) to a Linear 

Program (LP). While ILPs are NP hard [12], LPs can be solved in Polynomial time [6]. This is very significant since 

we are able to solve the LP formulation of a 1000 node network in two seconds even though it contains 2000 

constraints.  



 N. Hooda and O. Damani / Procedia Engineering 00 (2016) 000–000 7 

3. JalTantra System Description 

The above model has been implemented in the JalTantra system. The implementation is done using Java 7 [9] 

and GLPK 4.55 [8] Linear Program Solver. Java ILP 1.2a [10] is used as the Java interface to the GLPK library. It 

also uses Google Maps API [7] for GIS functionality which allows the user to easily mark the network details as 

well as extract information like node elevation and pipe lengths. A sample use case is shown in figure 2 below. The 

system is freely available at http://www.cse.iitb.ac.in/jaltantra . 

4. Results 

We have tested the OnePipe, our proposed model as well as BRANCH over six different networks.  Three of 

these are real world examples from villages of Thane district in Maharashtra, India. The other three networks are 

artificially generated to test the system performance over a range of network sizes. Both the OnePipe model and the 

proposed model are tested using the GLPK LP solver library. A timeout of 100 seconds is used. If the timeout period 

elapses, the solver outputs the best feasible result found so far rather than the global optimum. 

Table 2 presents the performance in terms of objective cost as well as running time of the three methods over all 

6 test networks. For the Gen_100 network, BRANCH terminated with a memory overflow message. Since the stated 

maximum number of nodes is 125, the Gen_1000 network is not run on BRANCH.  

The time taken by both the OnePipe model and our proposed model is less than half a second for the first four 

networks. But the ILP vs. LP nature is borne out for the two larger networks. In fact, for the Gen_1000 the OnePipe 

model also gets timed out. 

Being optimal, our proposed model indeed outperforms both BRANCH and the OnePipe model for all six 

networks in terms of objective cost. Both BRANCH and our proposed model use a more general formulation and 

hence better cost results are to be expected. Our model performs better than BRANCH since we use a LP 

formulation that is solved optimally whereas BRANCH uses a heuristic approach. In fact, for two of the first four 

networks even the OnePipe model performs better than BRANCH. 

 

 

Figure 2: GIS feature in JalTantra 

https://www.dropbox.com/s/r06794067g6zewk/JT_win32.rar
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Table 2: Comparison of Performance over all six networks 

  BRANCH OnePipe Model Proposed Model 

Network Number of 
Nodes 

Cost 

(1000 Rs) 

Time 

(msec) 

Cost 

(1000 Rs) 

Time 

(msec) 

Cost 

(1000 Rs) 

Time 

(msec) 

Mokhada 37 24,652 119380 24,317 429 24,181 387 

Shahpur 21 29,082 34878 29,523 356 28,895 318 

Khardi 11 21,281 4207 21,267 256 21,184 247 

Gen_5 5 1958 1105 2020 243 1949 228 

Gen_100 100 - - 93,718 1531 90,512 628 

Gen_1000 1000 - - 5,80,578 Timeout 5,62,564 2023 

5. Conclusions 

For the cost optimization of piped water networks, we have presented a general formulation that is optimal as 

well as faster than both the previous formulations for the specific problem of one pipe segment per link, and the 

heuristic approach used in available software. In the process, we found that, quite counter-intuitively, modeling of 

inferred constraints that capture the structure of the optimal solution worsens the runtime performance. We have 

implemented our solution in a water network design system JalTantra. JalTantra also has GIS integration for ease of 

adding network details to the optimization engine. 

Reservoir costs are an important component of the capital cost of a piped water network. Reservoir locations and 

elevations are currently inputs to the optimizer. But these can also be made variables and be part of the optimization 

problem by adding the reservoir costs to the objective function and adding relevant constraints relating to allocation 

of nodes to reservoirs.  
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